Maxwell's equations

- Maxwell's equations describe how electric and magnetic fields behave in the presence of charges and currents and the relationship between electric and magnetic fields.
- They unify the description of electric and magnetic fields as originating from a common phenomenon.
- They constitute one of the milestones in the history of theoretical physics, along with Newton's laws of motion, Einstein's relativity theory, and quantum mechanics.
- They predict the existence of electromagnetic waves and provide a unified understanding of the origin of the various forms of electromagnetic waves, from radio waves to visible light and gamma rays.

Electromagnetic spectrum

(Picture taken from Wikipedia: Electromagnetic spectrum - Wikipedia)

The electric field lines from a positive point charge emanate radially away from the charge.

The electric field lines from a negative point charge converge radially towards the charge.

The line direction tells us the direction of force on a positive charge and the intensity (how dense the lines are) tells us the strength of the field.

Electric field lines from a positive and a negative charge.

The electric field lines go out of the positive charge into the negative charge.

Derivation of Maxwell's $1^{\text {st }}$ equation

1) Place a point charge q at the center of a sphere of radius R :

2) Calculate the surface integral of the electric field lines through the surface of the sphere:

$$
\begin{aligned}
\int_{S(V)} d \vec{S} \cdot \vec{E}(\vec{r}) & =\int_{S(V)} d S \vec{e}_{r} \cdot\left(\frac{q}{4 \pi \varepsilon_{0} R^{2}} \vec{e}_{r}\right) \\
& =\frac{q}{4 \pi \varepsilon_{0} R^{2}} \int_{S(V)} d S \\
& =\frac{q}{4 \pi \varepsilon_{0} R^{2}} \times 4 \pi R^{2}=\frac{q}{\varepsilon_{0}}
\end{aligned}
$$

Maxwell's $1^{\text {st }}$ equation (integral form):

$$
\int_{S(V)} d \vec{S} \cdot \vec{E}(\vec{r})=\sum_{i} \frac{q_{i}}{\varepsilon_{0}}
$$

True for any surface enclosing the charges

The equation also applies to this surface or any other surface enclosing the charge q.

Maxwell's $1^{\text {st }}$ equation (differential form):
charge density $=$ charge per unit volume

$$
\int_{S(V)} d \vec{S} \cdot \vec{E}(\vec{r})=\frac{1}{\varepsilon_{0}} \sum_{i} q_{i}=\frac{1}{\varepsilon_{0}} \int_{V(S)} d V \stackrel{\rightharpoonup}{\rho(\vec{r})}
$$

amount of charge
in a little volume $d V$

Use Gauss formula: $\quad \int_{S(V)} d \vec{S} \cdot \vec{E}(\vec{r})=\int_{V(S)} d V(\nabla \cdot \vec{E}(\vec{r}))=\frac{1}{\varepsilon_{0}} \int_{V(S)} d V \rho(\vec{r})$

$$
\nabla \cdot \vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_{0}}
$$

Maxwell's $1^{\text {st }}$ equation (differential form) or also known as Gauss law

Consider a sphere of radius R containing a uniform charge distribution of density ρ. We wish to figure out the electric field at a radial distance r from the center of the sphere when

$$
r>R \text { and } r<R
$$

uniform charge density ρ
The case when $r>R$:

$$
E(r)=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \quad \begin{aligned}
& \text { It is the same as the electric field from a charge } Q \\
& \text { located at the center of the sphere! }
\end{aligned}
$$

The case when $r<R$:

Maxwell's $1^{\text {st: }}$

$\int_{S(V)} d \vec{S} \cdot \vec{E}(\vec{r})=\int_{S(V)} d S \vec{e}_{r} \cdot\left[E(r) \vec{e}_{r}\right]=E(r) \int_{S(V)} d S=E(r) 4 \pi r^{2}=\begin{gathered}q(r) \\ \varepsilon_{0}\end{gathered}$
$E(r)=\frac{q(r)}{4 \pi \varepsilon_{0} r^{2}}=\frac{Q}{4 \pi \varepsilon_{0} R^{3}} r$
It is linear in r !

Maxwell's $2^{\text {nd }}$ equation: No magnetic charge

Maxwell's $3^{\text {rd }}$ equation: Faraday's law

A magnet moving towards a conducting loop induces current in the loop in the direction shown.

If the magnet moves away from the loop the induced current flows in the opposite direction.
(seen from the left side)
magnetic flux
Faraday's law:

$V=-\frac{d \Phi}{d t}$ through the loop C :

$$
\Phi=\int_{S(C)} d \vec{S} \cdot \vec{B}(\vec{r})
$$

The crucial point is that the magnetic flux through the loop changes in time. If the flux is static, there is no current induced.

Induced voltage V is equal to the rate of change of magnetic flux through the loop

When applying Faraday's law, it is very important to define the circuit.

Maxwell's $3^{\text {rd }}$ equation: Faraday's law

Faraday's law:

$$
V=-\frac{d \Phi}{d t}
$$

Induced voltage V is equal to the rate of change of magnetic flux through the loop
magnetic flux through the loop C :

$$
\Phi=\int_{S(C)} d \vec{S} \cdot \vec{B}(\vec{r})
$$

The crucial point is that the magnetic flux through the loop changes in time.
If the flux is static, there is no current induced.

When applying Faraday's law, it is very important to define the circuit.

Derivation of Maxwell's $3^{\text {rd }}$ equation

$$
\text { Faraday's law: } \quad V=-\frac{d \Phi}{d t}=-\int_{S(C)} d \vec{S} \cdot \frac{\partial \vec{B}(\vec{r})}{\partial t}
$$

$$
\left.\begin{array}{rl}
V & =\int_{C} d \vec{r} \cdot \vec{E}(\vec{r}) \quad \begin{array}{l}
\text { A voltage in a circuit or loop } C \text { is the work done } \\
\text { in bringing a positive unit charge around the loop. }
\end{array} \\
& =\int_{S(C)} d \vec{S} \cdot(\nabla \times \vec{E}(\vec{r})) \quad \text { from Stokes formula }
\end{array}\right] \begin{aligned}
& \int_{S(C)} d \vec{S} \cdot(\nabla \times \vec{E}(\vec{r}))=-\int_{S(C)} d \vec{S} \cdot \frac{\partial \vec{B}(\vec{r})}{\partial t} \\
& \nabla \times \vec{E}(\vec{r})=-\frac{\partial \vec{B}(\vec{r})}{\partial t} \quad \text { Maxwell's 3rd (differential form) }
\end{aligned}
$$

$$
V=-\frac{d \Phi}{d t}
$$

Right-hand rule:

(Picture from Wikipedia: Right-hand rule - Wikipedia)

The magnetic field produced by the induced current tries to keep the magnetic flux through the loop constant, i.e., away from us to reduce the increasing flux.

Here, the magnetic field produced by the induced current is towards us in order to increase the decreasing flux, to keep the flux constant.

Biot-Savart law: the analogue of Coulomb's law for current

Ampere's law

$$
2 \pi r B(r)=\int_{C(S)} d \vec{r} \cdot \vec{B}(\vec{r})
$$

$\int_{C(S)} d \vec{r} \cdot \vec{B}(\vec{r})=\mu_{0} I$

Ampere's law

$$
\int_{S(C)} d \vec{S} \cdot(\nabla \times \vec{B}(\vec{r}))=\mu_{0} \int_{S(C)} d \vec{S} \cdot \vec{j}(\vec{r}) \rightarrow \nabla \times \vec{B}(\vec{r})=\mu_{0} \vec{j}(\vec{r})
$$

The line integral of B around a loop C is given by the current flowing through the surface enclosing the loop.

Note that the surface is arbitrary, as long as it encloses the loop C.
This result can be derived from Biot-Savart law (see next slide)

$$
\int_{C(S)} d \vec{r} \cdot \vec{B}(\vec{r})=\mu_{0} I
$$

I

$$
B(r)=\begin{aligned}
& \mu_{0} I \\
& 2 \pi r
\end{aligned}
$$

> Ampere's law is valid for a constant current but it breaks down when the current changes in time.
> The modification of Ampere's law leads to Maxwell's $4^{\text {th }}$ equation. It is a very important contribution from Maxwell, which predicts the existence of electromagnetic waves.

$$
B(R)=\frac{\mu_{0} I}{2 \pi R} \text { from Biot-Savart law }
$$

$$
d B(R)=\frac{\mu_{0} I d \theta \sin \theta}{4 \pi \quad R} \rightarrow B(R)=\frac{\mu_{0} I}{4 \pi} 2 \int_{0}^{\frac{\pi}{2}} d \theta \frac{\sin \theta}{R}=\frac{\mu_{0} I}{2 \pi R}
$$

(The factor of 2 arises because the contribution from $z=0$ to ∞ is the same as the contribution from $z=-\infty$ to 0)

Fundamental problem with Ampere's law

Current flows around the circuit which decays with time as the charge in the capacitor is depleted.

There is no current flowing through surface S_{2}.
Ampere's law is violated!

$$
\int_{C(S)} d \vec{r} \cdot \vec{B}(\vec{r})=\mu_{0} I
$$

Notice that there is electric field piercing through S_{2} which decreases with time.

What is missing in Ampere's law?

Consider the volume enclosed by the surface $S=S_{1}+S_{2}$.
The current flowing out of the volume is given by $I(t)=-\frac{d Q(t)}{d t}$ charge in the capacitor

$$
\left.\left.\begin{array}{l}
I(t)=\int_{S(V)} d \vec{S} \cdot \vec{j}(\vec{r}, t) \\
2(t)=\frac{d}{d t} \int_{V(S)} d V \rho(\vec{r}, t)
\end{array}\right\} \begin{array}{l}
\int_{S(V)} d \vec{S} \cdot \vec{j}(\vec{r}, t)=-\int_{V(S)} d V \frac{d}{d t} \rho(\vec{r}, t) \\
\| \text { (Gauss) } \\
\int_{V(S)} d V \nabla \cdot \vec{j}(\vec{r}, t)
\end{array}\right] \begin{aligned}
& \nabla \cdot \vec{j}(\vec{r}, t)=-\frac{\partial \rho(\vec{r}, t)}{\partial t}
\end{aligned}
$$

According to Ampere's law $\nabla \times \vec{B}(\vec{r})=\mu_{0} \vec{J}(\vec{r})$

$$
\begin{aligned}
& \nabla \cdot[\nabla \times \vec{B}(\vec{r})]=\mu_{0} \nabla \cdot \vec{j}(\vec{r})=0 \\
& \quad=0 \text { (mathematical identity) }
\end{aligned}
$$

Continuity equation (fundamental in physics) is not fulfilled!

Maxwell's $4^{\text {th }}$ equation

Modify Ampere's law as follows:

$$
\nabla \times \vec{B}=\mu_{0}(\vec{j}+\vec{X})
$$

such that the continuity equation is fulfilled:

$$
\nabla \cdot(\nabla \times \vec{B})=\mu_{0} \nabla \cdot(\vec{j}+\vec{X})=0
$$

 "displacement current")

$$
\nabla \times \vec{B}=\mu_{0}\left(\vec{j}+\varepsilon_{0} \frac{\partial \vec{E}}{\partial t}\right) \quad \text { Maxwell's } 4^{\text {th }}
$$

Maxwell's equations

Differential form

$\nabla \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}$
$\nabla \cdot \vec{B}=0$

$$
\begin{array}{llll}
\begin{array}{c}
E \text { and } \boldsymbol{B} \text { are } \\
\text { inter-related } \\
\text { when they }
\end{array} & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \text { Faraday's law } & \int_{C(S)} d \vec{r} \cdot \vec{E}=-\int_{S(C)} d \vec{S} \cdot \frac{\partial \vec{B}}{\partial t} \\
\begin{array}{c}
\text { change with } \\
\text { time }
\end{array} & \nabla \times \vec{B}=\mu_{0}\left(\vec{j}+\varepsilon_{0} \frac{\partial \vec{E}}{\partial t}\right) & \begin{array}{l}
\text { Maxwell's } \\
\text { contribution }
\end{array} & \int_{C(S)} d \vec{r} \cdot \vec{B}=\mu_{0} \varepsilon_{0} \int_{S(C)} d \vec{S} \cdot\left(\frac{\vec{j}}{\varepsilon_{0}}+\frac{\partial \vec{E}}{\partial t}\right)
\end{array}
$$

Coulomb's law

$$
\int_{S(V)} d \vec{S} \cdot \vec{E}=\sum_{i} \frac{q_{i}}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0}}
$$

No magnetic charge

$$
\int_{S(V)} d \vec{S} \cdot \vec{B}=0
$$

Integral form

Electromagnetic wave equations in vacuum

In vacuum there is no charge and no current so that Maxwell's equations become

$$
\begin{array}{ll}
\nabla \cdot \vec{E}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{B}=\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{array}
$$

Consider taking a rotation on Maxwell's $3^{\text {rd }}$:

$$
\nabla \times(\nabla \times \vec{E})=-\frac{\partial}{\partial t}(\nabla \times \vec{B})=-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

From Rule 2: $\quad \nabla(\nabla \cdot \vec{E})-(\nabla \cdot \nabla) \vec{E}$
$0 \quad \nabla^{2} \vec{E}$
Similarly, taking the rotation of Maxwell's $4^{\text {th }}$ yields

$$
\begin{aligned}
& \nabla^{2} \vec{E}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}} \\
& \nabla^{2} \vec{B}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}}
\end{aligned}
$$

Solutions to the wave equation

The wave equation in 1D has the general form

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}}
$$

(A second-order differential equation has two independent solutions)

The solution is given by $f=f_{L}(x+c t)+f_{R}(x-c t) \quad f_{L}$ and f_{R} are arbitrary functions.
moves to the left moves to the right with speed c
Check that it is a solution to the wave equation. Let $y=x+c t$
Chain rule of differentiation: $\quad \partial x=\frac{L_{L}}{\partial y} \partial x=\frac{L_{L}}{\partial y} \quad \frac{J_{L}}{\partial y} \frac{\partial t}{\partial t}=c \frac{\partial L_{L}}{\partial y}$

$$
\begin{aligned}
& \frac{\partial^{2} f_{L}}{\partial x^{2}}=\frac{\partial}{\partial x}\binom{\partial f_{L}}{\partial y}=\frac{\partial}{\partial y}\binom{\partial f_{L}}{\partial y} \frac{\partial y}{\partial x}=\frac{\partial^{2} f_{L}}{\partial y^{2}} \\
& \frac{\partial^{2} f_{L}}{\partial t^{2}}=c \frac{\partial}{\partial t}\left(\frac{\partial f_{L}}{\partial y}\right)=c \frac{\partial}{\partial y}\left(\frac{\partial f_{L}}{\partial y}\right) \frac{\partial y}{\partial t}=c^{2} \frac{\partial^{2} f_{L}}{\partial y^{2}}
\end{aligned}
$$

$$
\frac{\partial^{2} f_{L}}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} f_{L}}{\partial t^{2}}
$$

(We have not specified f_{L} so it is arbitrary)

Let us plot $f_{R}(x-c t)$ for $t=0$ and $t=1$:

In one second, the wave packet moves a distance c.
In other words, its speed is c.

Consider now the electromagnetic wave equation in 1D for E_{x}

$$
\frac{\partial^{2} E_{x}}{\partial x^{2}}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} E_{x}}{\partial t^{2}}
$$

Comparison with the wave equation shows that: $c^{2}=\frac{1}{\mu_{0} \varepsilon_{0}} \rightarrow c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Maxwell not only predicted the existence of electromagnetic waves but also predicted the speed!

$$
\begin{gathered}
f_{R}=A \exp [i(k x-\omega t)] \\
f_{L}=A \exp [i(-k x-\omega t)] \\
\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}} \\
A(i k)^{2}=\frac{1}{c^{2}} A(-i \omega)^{2} \rightarrow k^{2}=\frac{\omega^{2}}{c^{2}} \\
\\
\omega(k)= \pm c k \quad \text { dispersion relation }
\end{gathered}
$$

Plane-wave solutions to the wave equation in 3D

$$
f(\vec{r}, t)=A \exp [i(\vec{k} \cdot \vec{r}-\omega t)]=A \exp \left[i\left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)\right]
$$

phase
any point on the plane has the same phase

plane of equal phase moves to the right

$$
\begin{array}{ll}
\vec{E}(\vec{r}, t)=\vec{E}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)] & \vec{E}_{0}=\left(E_{0 x}, E_{0 y}, E_{0 z}\right) \\
\vec{B}(\vec{r}, t)=\vec{B}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)] & \vec{B}_{0}=\left(B_{0 x}, B_{0 y}, B_{0 z}\right)
\end{array}
$$

$$
\begin{array}{l|c}
\nabla \cdot \vec{E}=0 & i \vec{k} \cdot \vec{E}=0 \\
\nabla \cdot \vec{B}=0 & \\
i \vec{k} \cdot \vec{B}=0 \\
\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \left.\begin{array}{l}
\\
i \vec{k} \times \vec{E}=i \omega \vec{B} \\
\nabla \times \vec{B}=\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
i \vec{k} \times \vec{B}=\mu_{0} \varepsilon_{0}(-i \omega) \vec{E} \text { are perpendicular to } \boldsymbol{k}
\end{array}\right] \boldsymbol{E} \text { is perpendicular to }
\end{array}
$$

$$
\begin{aligned}
& \vec{E}(\vec{r}, t)=\vec{E}_{0} \exp [i(\vec{k} \cdot \vec{r}-\omega t)] \\
& E_{x}(\vec{r}, t)=E_{0 x} \exp \left\lfloor i\left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)\right] \\
& E_{y}(\vec{r}, t)=E_{0 y} \exp \left\lfloor i\left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)\right] \\
& E_{z}(\vec{r}, t)=E_{0 z} \exp \left\lfloor i\left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)\right] \\
& \nabla \cdot \vec{E}= \\
& =\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z} \\
& =i k_{x} E_{0 x}+i k_{y} E_{0 y}+i k_{z} E_{0 z} \\
& =i \vec{k} \cdot \vec{E}
\end{aligned}
$$

$$
\nabla \times \vec{E}
$$

$$
\begin{aligned}
& \nabla \times \vec{E}=\frac{\vec{e}_{x}}{} \begin{array}{rlr}
\vec{e}_{y} & \vec{e}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
E_{x} & E_{y} & E_{z}
\end{array}=\vec{e}_{x}\left(\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}\right)+\vec{e}_{y}\left(\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}\right)+\vec{e}_{z}\left(\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}\right) \\
&=\vec{e}_{x}\left(i k_{y} E_{z}-i k_{z} E_{y}\right)+\vec{e}_{y}\left(i k_{z} E_{x}-i k_{x} E_{z}\right)+\vec{e}_{z}\left(i k_{x} E_{y}-i k_{y} E_{x}\right) \\
&=i \vec{k} \times \vec{E} \\
& \begin{array}{l}
\text { For a plane wave (not in general): } \\
\nabla \rightarrow i \vec{k}
\end{array} \\
& \frac{\partial}{\partial t} \rightarrow-i \omega
\end{aligned}
$$

Magnitudes of \boldsymbol{E} a $\mu \boldsymbol{T}$ nd \boldsymbol{B}

$$
\begin{gathered}
i \vec{k} \times \vec{E}=i \omega \vec{B} \xrightarrow{\text { magnitudes }} \begin{array}{r}
|\vec{k} \times \vec{E}|=\omega|\vec{B}| \\
\qquad k E=\omega B \quad \text { since } k \text { is perpendicular to } E \\
B=\frac{k}{\omega} E=c E
\end{array}, \$ \text { }
\end{gathered}
$$

A typical value of E for a radio wave is $40 \mathrm{~V} / \mathrm{m} \rightarrow B=0.1 \mu T$ (very weak).
Compare with the earth's magnetic field of about $50 \mu T$.
A small bar magnet has about 0.01 T .

The direction of the electric field is used to define the direction of light polarization.

Maxwell's equations in a transparent material

Still valid but the electric permittivity and magnetic permeability are modified depending on the material.

$$
\begin{aligned}
\varepsilon_{0} \rightarrow \varepsilon=\varepsilon_{r} \varepsilon_{0}, & \mu_{0} \rightarrow \mu=\mu_{r} \mu_{0} \\
\nabla \cdot \vec{E}=\frac{\rho}{\varepsilon} & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{B}=\mu\left(\vec{j}+\varepsilon \frac{\partial \vec{E}}{\partial t}\right)
\end{aligned}
$$

The speed of light in a material is given by $c_{\text {mat }}=\frac{1}{\sqrt{\varepsilon \mu}}=\frac{c}{\sqrt{\varepsilon_{r} \mu_{r}}}$

Examples:	Air	1.00059		$\boldsymbol{E}_{\boldsymbol{r}}$
	Water	80.1	Iron (Fe)	5000
	Pyrex (glass)	4.7	Neodymium magnet	1.05
	Silicon	11.7	Aluminium	1.000022

