Maxwell’s equations

Maxwell’s equations describe how electric and magnetic fields behave in the presence of charges and currents
and the relationship between electric and magnetic fields.

They unify the description of electric and magnetic fields as originating from a common phenomenon.

They constitute one of the milestones in the history of theoretical physics, along with Newton’s laws of motion,
Einstein’s relativity theory, and quantum mechanics.

They predict the existence of electromagnetic waves and provide a unified understanding of the origin of the various
forms of electromagnetic waves, from radio waves to visible light and gamma rays.
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(Picture taken from Wikipedia: Electromagnetic spectrum - Wikipedia)



https://en.wikipedia.org/wiki/Electromagnetic_spectrum

Maxwell’s 1t equation: Coulomb’s law

Fin= 99 e

Are,r®

A positive charge +Q
experiences a radial force

—— away from the charge g

(equal charges repel each other)

E(r) = b e E(r)=- 9 &

2 °r 2 °r
e, r eyl
The electric field lines from a positive point charge The electric field lines from a negative point charge
emanate radially away from the charge. converge radially towards the charge.

The line direction tells us the direction of force on a positive charge
and the intensity (how dense the lines are) tells us the strength of the field.




Electric field lines from a positive and a negative charge.

A

The electric field lines go out of the positive charge into the negative charge.




Derivation of Maxwell’s 15t equation

Maxwell’s 1t equation (integral form):

[dS-E(r) = Z i
1) Place a point charge g at 5 S(V)

the center of a sphere of radius R:

True for any surface
enclosing the charges

2) Calculate the surface integral of the electric field lines

through the surface of the sphere: 5
[ds-E(r)= [ dse, (qzej
Adre,R
S(V) S(V) 0
T [ds
472'80R sv)
— a x 4aR% = q independent of R The equation also applies to this surface or

7Z80R & any other surface enclosing the charge g.



S(V)

Use Gauss formula:

Maxwell’s 1t equation (differential form):

charge density = charge per unit volume

€0 v(s)

[6S-E(M="Ya =" [aVp(r)

amount of charge
in a little volume dV

[dS-E(r)= [dv(V
S(V) V(S)
v.gr)=""
€o

E(r))=

= [av p(r)

€0 v{s)

Maxwell’s 1t equation (differential form)
or also known as Gauss law




Example of the use of Maxwell’s 1t equation

R
Consider a sphere of radius R containing a uniform charge distribution of density p. /
We wish to figure out the electric field at a radial distance r from the center of the sphere when
r>Randr<R

uniform charge density p

The case when r > R:

Total charge inside the red sphere:

E(r) =E(ne, Q= [avp(r)=p [ aV :437ZR3,0

V(S) V(S)

Maxwell’s 1st:

jdg- E(r) = IdSE‘r [E(r)e, ]=E(r) IdS :E(r)47zr2 :Q

S(V) S(V) S(V) €0

E(r) — Q It is the same as the electric field from a charge Q
47z-g0r2 located at the center of the sphere!



The case when r <R:

E(r) = E(r)E,

r Total charge enclosed by the red sphere:
4 re
q) = [avp(r)=p [ dv=""rp= Q=""Rp
V(S) V(s) 3
Maxwell’s 1t
[dS-E(r)= [dse, -[E(re,]1=E(r) [dS =E(r)4nr® = an) g
S(V) S(V) S(V) €o
~ I
E(r)= q(r)2 = Q o It is linear in r !
Are,r°  4ng,R




Maxwell’s 2"9 equation: No magnetic charge

Magnetic field lines of a magnet

emanate h to south
J.dg- B(r) = J-dV V-B(r)=0| nomagnetic charge
N S(V) V(S)
V-B(r)=0
S
N N

If a magnet is cut into two parts we get two magnets!

\ The North and the South cannot be separated.
N
S




Maxwell’s 3 equation: Faraday’s law

(seen from the left side)

D — A magnet moving towards a conducting loop
induces current in the loop in the direction shown.
N S
If the magnet moves away from the loop
the induced current flows in the opposite direction.
magnetic flux
Faraday’s law: through the loop C:
dd o The crucial point is that the magnetic flux
= — O = de -B(r)| | through the loop changes in time.
dt S(C) If the flux is static, there is no current induced.

Induced voltage V is equal to

the rate of change of magnetic flux
through the loop

When applying Faraday’s law, it is very important
to define the circuit.




Maxwell’s 3 equation: Faraday’s law

C

@ - ’ N Faraday’s law:
1 dod
(" ’ "\ uniform magnetic field V— V =———
pointing towards us | dt
\_ < J

L

Induced voltage V is equal to the rate of change
of magnetic flux through the loop

Current in a conducting loop is induced when maenetic flux _
the magnetic flux through the loop is increased or decreased. % D = _[dS . B(I")

through the loop C:
S(C)

The crucial point is that the magnetic flux

through the loop changes in time.
If the flux is static, there is no current induced. When applying Faraday’s law, it is very important
to define the circuit.




Derivation of Maxwell’s 3 equation

Faraday’s law: V = _d(D —_ j ds - oB(r)
dt $(C) ot
V — der- E(I") Avol.tag.e in a CirFl:Iit or Ipop Cis the work done
in bringing a positive unit charge around the loop.
C

— jdg : (V X E(F)) from Stokes formula

5(C)
J.dg-(Vx E'(r)): — j ds - oB(r)
s(C) s(C) ot
V x E(r) = — ﬁga(l") Maxwell’s 3 (differential form)
t




dd
dt

Lenz law: direction of induced current

Right-hand rule:

B

(Picture from Wikipedia:
Right-hand rule - Wikipedia)

— O,
( ’ ) uniform magnetic field
pointing towards us

©

( < ) uniform magnetic field
pointing towards us

The magnetic field produced
by the induced current

tries to keep the magnetic flux
through the loop constant,
i.e., away from us to reduce
the increasing flux.

Here, the magnetic field produced

by the induced current is towards us

in order to increase the decreasing flux,
to keep the flux constant.


https://en.wikipedia.org/wiki/Right-hand_rule

Biot-Savart law: the analogue of Coulomb’s law for current

X [
2

dg(r) = #o! d

Adr 1

dB(r)
contribution to the magnetic field at r
from a small current element 1dl

compare with dE(r) —

1 dg ¢
Are, I




Ampere’s law

271B(r) = [dr8(r) fdrB(r)= s,

Ampere’s law
C(S) C(S)

Al

[dS-(VxB(r)= 1, [dS-T(r) >V xB(r) = 4,3 (r)

S from S(C)
Stokes current density
B(r) = ,uol The line integral of B around a loop Cis given by

27 r the current flowing through the surface enclosing the loop.

_ . Note that the surface is arbitrary, as long as it encloses the loop C.
This result can be derived

from Biot-Savart law
(see next slide)

Ampere’s law is valid for a constant current but it breaks down
when the current changes in time.

The modification of Ampere’s law leads to Maxwell’s 4t equation.
It is a very important contribution from Maxwell,

which predicts the existence of electromagnetic waves.




I
B(R) = o' from Biot-Savart law
27IR

Z
_ | dzxr R . 1 sin®é
dB(r'):'Z0 . r:S|n6’—>r2= n?
Al T dz do
. R r’ R
| dzsin@ —z=Rcotfd > dz = deo
dB(R) = ‘4‘0 = sin2 @
T
0 R Integrate from Z =—0 100, -
which is equivalent to integrating from & =0t0 —
r u,1 d@sing ul ¢5,.sin@  w,l
2] dB(R) = ~° B(R)=02j2d9 _ Mo
dz A A 90 R 2R

(The factor of 2 arises because the contribution from Z = 0to oo
is the same as the contribution from Z =—c0t00)



Fundamental problem with Ampere’s law

charged

capacitor
o -+

\
m A AR A
bt

Switch on
the circuit =2

\_

According to Ampere’s law,

the line integral of the magnetic field

around the loop Cis given by the current
flowing through the surface enclosing the loop:

SﬁdrB(r) = 1|

C(S)

5,

4 ,236\7@

E(t) .
\_ J

Current flows around the circuit which decays with time
as the charge in the capacitor is depleted.

There is no current flowing through surface S..
Ampere’s law is violated!

Notice that there is electric field piercing through S,
which decreases with time.



What is missing in Ampere’s law?

Consider the volume enclosed by the surface S =5, + ..

charge in the capacitor
dQ(t)
dt

The current flowing out of the volume is given by | (t) = —

1(t) = jd§- j(r,t)

> jd§- jrt)=- jdv jtp(r,t)
dQ(t) — i jdV o(r,t) S(V) Il (Gauss) V(S) Vot =- 8,02:’0
dt dt v (s)
J-dV V- J(r,t) Continuity equation
V(S) (conservation of charge)

According to Ampere’s law V x B(F) = U, T(r)

V-[VxB(r)] = V- §(r) =0

Continuity equation (fundamental in physics)
is_not fulfilled!

= 0 (mathematical identity)



Maxwell’s 4th equation

Modify Ampere’s law as follows:
VxB=,(]+X)

such that the continuity equation is fulfilled:

V-(VxB)=,V-(]+X)=0

V- X=-V-J= op e

ot X =g, O

From Maxwell’s 1t V. E = P N 5,0 — gov.aE ot
&g ot ot (Sometimes called

“displacement current”)

VxB= ,Llo(j + &, %It;j Maxwell’s 4th




E and B are
inter-related
when they
change with
time

Differential form

V-E=F
&y
V-B=0
VXE:—aB
ot

Maxwell’s equations

—
-

Stokes-Gauss
P

a

Coulomb’s law

No magnetic charge

Faraday’s law

Maxwell’s
contribution

Integral form

0. E=3 % =@
sf‘\‘/) Z‘go &
jd§-B=o

S(V)

jdr-Ez—j ds. B
C(S) S(C) at

OE

fdr B = uz, jd§( I

C(S) 5(C) €0

ot

J



Electromagnetic wave equations in vacuum

In vacuum there is no charge and no current so that Maxwell’s equations become

V-E=0 VxE = B
ot
_ - oE
V-B=0 VxB=ue,—
Hoég ot
Consider taking a rotation on Maxwell’s 379 :
2
Vx(VxE)= —a(Vx B)=—u,z, 8I2§'
ot ot 2
VE = u,¢ OE
From Rule 2: V(V- E)— (V : V)E Hoo ot?
0 V?E
ZB> aZB
Similarly, taking the rotation of Maxwell’s 4t yields VB = Ho&y ot?

Wave equations in 3D for Eand B



Solutions to the wave equation

2 2 . . .
The wave equation in 1D has the general form o1 — 1 o°f (A second-order differential equation
ze CZ 8’[2 has two independent solutions)
The solution is given by | f = f (X +ct) + f; (X —ct) f, and f, are arbitrary functions.
< >

moves to the left  moves to the right with speed ¢

Check that it is a solution to the wave equation. Let Y = X + Ct

Chain rule 8f|_ . 6f|_ 6)’ . éBfL 61:L _ af|_ ay _ Cﬁfl_
of differentiation:  gx oy OX B oy ot oy ot oy
o°f, _ 0 (aij: 5 (aij@y:asz
2 2
ox® ox\ oy ) oy(oy jox oy o’f, _ 10°M,
2 2 A2
ot _ oot \__ ofef Yoy ot X ¢
ot* ot\ oy oy\ oy )ot oy* (We have not specified f, so

it is arbitrary)



Let us plot f, (x-ct) for t=0 and t=1:
t=0 =1

f.(x—ct) = f.(X) f.(x—ct) = f.(x—c)

x=0 X=C

In one second, the wave packet moves a distance c.
In other words, its speed is c.

2 2

Consider now the electromagnetic wave equation in 1D for E, 0 EX _ e 0 Ex

and assume that it depends only on x (in general E, would depend on x, y, and 2): ox2 Ho%o ot 2
o | , 1 1 g

Comparison with the wave equation shows that: [C™ = —> C = =3%x10°m/s

Ho&g | Ho&o

Maxwell not only predicted the existence of electromagnetic waves
but also predicted the speed!




Harmonic solutions to the wave equation

f. = Aexpli(kx — ot)]

f, = Aexpli(—kx — at)]

o’f 1 0°f
ox*  c* ot?
2
A(ik)? :Cle(—ia))z 5 K? =f:2

w(k) = £ck| dispersion relation




Plane-wave solutions to the wave equation in 3D

f(r,t) = Aexpli(K - T —at)]= Aexpli(k,x+k,y+k,z—at)]

phase

/ /
—— —

K K
perpendicular
to the plane \

any point on the plane has the same phase plane of equal phase

moves to the right



E(r,t)=E,exp
B(r,t) =B, exp

i(K-T—ot)

i(K-T—at)]

V-E=0 ik-E=0
E and B are perpendicular to k
V-B=0 ik-B=0 NE
oB .o
VxE=—"" IKxE =iwB
ot =
- oE } E is perpendicular to B
VXB:ﬂogoat |EXB:ﬂogo(—|W)E B
TSNk
NS ST ( vz =
B

|



V-E

E(r,t) = E,expli(K -1 — at)]

E, (1) = Eo, expli(k,x+k,y +k,z—at) ]
K-r

E, (rt)=E,, exp[i(k,x+k,y+k,z—amt)

E,(r,t)=Eg, expli(k,x+k, y+k,z—awt)]

oE
VE:aEX+ y+aEZ
oXx oy oz

— ik, E,, +ik, E,, +ik,Eq,

=ik -E



VxE =

o OE, OE, (8EX OE, j OE, OE,
=€, — +6€, — + €, —
0z oy 0z 0z  OX oX oYy

=g, (ik, E, —ik,E, )+e,(ik,E, —ik,E,)+8,(ik.E, —ik E,)

=ik xE For a plane wave (not in general):

V > ik

o, :
> -iw
ot



Magnitudes of Ea u7T nd B

i} tudes
iKxE=ioB —— " |KxE|=w|B|

kE = B since k is perpendicular to E

B:kE:CE
),

A typical value of E for a radio wave is 40 V/m - B =0.1 uT (very weak).
Compare with the earth’s magnetic field of about 50 uT.
A small bar magnet has about 0.01 T.

The direction of the electric field is used to define the direction of light polarization.




Maxwell’s equations in a transparent material

Still valid but the electric permittivity and magnetic permeability are modified depending on the material.

Eg > E=E 8y Mo > U= Mty

Vv E:p VxE:_@B
Poy ot
. _ . ©OE
V-B=0 VxB= +&
NS
1 C

The speed of light in a material is given by |C,,.;; = r =
s &M,

&, H,

Air 1.00053 Iron (Fe) 5000
Examples: .

Water 30.1 Neodymium magnet 1.05

Pyrex (glass) 4.7 Aluminium 1.000 022

Silicon 11.7 Nickel 100



