
Maxwell’s equations

• Maxwell’s equations describe how electric and magnetic fields behave in the presence of charges and currents
and the relationship between electric and magnetic fields.

• They unify the description of electric and magnetic fields as originating from a common phenomenon.

• They constitute one of the milestones in the history of theoretical physics, along with Newton’s laws of motion,
Einstein’s relativity theory, and quantum mechanics.

• They predict the existence of electromagnetic waves and provide a unified understanding of the origin of the various
forms of electromagnetic waves, from radio waves to visible light and gamma rays.



(Picture taken from Wikipedia: Electromagnetic spectrum - Wikipedia)

Electromagnetic spectrum

https://en.wikipedia.org/wiki/Electromagnetic_spectrum


Maxwell’s 1st equation: Coulomb’s law
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charge +q

The electric field lines from a positive point charge
emanate radially away from the charge.
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The electric field lines from a negative point charge
converge radially towards the charge.
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A positive charge +Q
experiences a radial force
away from the charge q
(equal charges repel each other)

The line direction tells us the direction of force on a positive charge
and the intensity (how dense the lines are) tells us the strength of the field.



+q -q

Electric field lines from a positive and a negative charge.

The electric field lines go out of the positive charge into the negative charge.



Derivation of Maxwell’s 1st equation

1) Place a point charge q at 
the center of a sphere of radius R:

R

2) Calculate the surface integral of the electric field lines
through the surface of the sphere:
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Maxwell’s 1st equation (integral form):
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The equation also applies to this surface or
any other surface enclosing the charge q.
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Maxwell’s 1st equation (differential form):
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amount of charge
in a little volume dV

charge density = charge per unit volume

Use Gauss formula:    
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or also known as Gauss law



Example of the use of Maxwell’s 1st equation
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Consider a sphere of radius R containing a uniform charge distribution of density ρ.
We wish to figure out the electric field at a radial distance r from the center of the sphere when

r > R and r < R

r

The case when r > R:
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located at the center of the sphere!

uniform charge density ρ

Total charge inside the red sphere:



The case when r < R:

R

r

S

rerErE


)()( 

Q
R

r
rdVrdVrq

SVSV

3

3

)(

3

)(
3

4
)()(   






Total charge enclosed by the red sphere:

0

2

)()()(

)(
4)()(])([)(




rq
rrEdSrEerEedSrESd

VS

r

VS

r

VS

 


Maxwell’s 1st:

r
R

Q

r

rq
rE

3

0

2

0 44

)(
)(


 It is linear in r !

R r

E(r)

r~
2

1
~

r


 3

3

4
RQ 



Maxwell’s 2nd equation: No magnetic charge
Magnetic field lines of a magnet
emanate from north to south
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If a magnet is cut into two parts we get two magnets!
The North and the South cannot be separated.
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Maxwell’s 3rd equation: Faraday’s law

A magnet moving towards a conducting loop
induces current in the loop in the direction shown.
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Induced voltage V is equal to
the rate of change of magnetic flux
through the loop
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through the loop changes in time.
If the flux is static, there is no current induced.

Faraday’s law:
magnetic flux
through the loop C:
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If the magnet moves away from the loop
the induced current flows in the opposite direction.

C

When applying Faraday’s law, it is very important
to define the circuit.

(seen from the left side)



Maxwell’s 3rd equation: Faraday’s law
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Induced voltage V is equal to the rate of change
of magnetic flux through the loop

 
)(

)(
CS

rBSd


The crucial point is that the magnetic flux
through the loop changes in time.
If the flux is static, there is no current induced.

Faraday’s law:

magnetic flux
through the loop C:

C

When applying Faraday’s law, it is very important
to define the circuit.



uniform magnetic field
pointing towards us
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Current in a conducting loop is induced when 
the magnetic flux through the loop is increased or decreased.



Derivation of Maxwell’s 3rd equation
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 A voltage in a circuit or loop C is the work done
in bringing a positive unit charge around the loop.
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Maxwell’s 3rd (differential form)

Faraday’s law:



Lenz law: direction of induced current



uniform magnetic field
pointing towards us

I

The magnetic field produced
by the induced current
tries to keep the magnetic flux
through the loop constant,
i.e., away from us to reduce
the increasing flux.



uniform magnetic field
pointing towards us

I

Here, the magnetic field produced
by the induced current is towards us
in order to increase the decreasing flux,
to keep the flux constant.

Right-hand rule:

dt

d
V




(Picture from Wikipedia:
Right-hand rule - Wikipedia)

https://en.wikipedia.org/wiki/Right-hand_rule


Biot-Savart law: the analogue of Coulomb’s law for current

2

0 ˆ

4
)(

r

rldI
rBd











ld


r


)(rBd


I

contribution to the magnetic field at r
from a small current element lId



re
r

dq
rEd


2

04

1
)(


compare with



Ampere’s law
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This result can be derived
from Biot-Savart law

(see next slide)
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The line integral of B around a loop C is given by
the current flowing through the surface enclosing the loop.

Note that the surface is arbitrary, as long as it encloses the loop C.

Ampere’s law

Ampere’s law is valid for a constant current but it breaks down
when the current changes in time. 
The modification of Ampere’s law leads to Maxwell’s 4th equation.
It is a very important contribution from Maxwell, 
which predicts the existence of electromagnetic waves.
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Fundamental problem with Ampere’s law
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According to Ampere’s law,
the line integral of the magnetic field
around the loop C is given by the current
flowing through the surface enclosing the loop:

C

There is no current flowing through surface S2.
Ampere’s law is violated!

Notice that there is electric field piercing through S2

which decreases with time.

Current flows around the circuit which decays with time
as the charge in the capacitor is depleted.

charged
capacitor

E




What is missing in Ampere’s law?

Consider the volume enclosed by the surface S = S1 + S2.

The current flowing out of the volume is given by
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Continuity equation (fundamental in physics)
is not fulfilled!



Maxwell’s 4th equation
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(Sometimes called
“displacement current”)



Maxwell’s equations
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Electromagnetic wave equations in vacuum

In vacuum there is no charge and no current so that Maxwell’s equations become
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Wave equations in 3D for E and B



Solutions to the wave equation

The wave equation in 1D has the general form
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it is arbitrary)

(A second-order differential equation
has two independent solutions)
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In one second, the wave packet moves a distance c.
In other words, its speed is c.

Let us plot fR (x-ct) for t=0 and t=1:

Consider now the electromagnetic wave equation in 1D for Ex

and assume that it depends only on x (in general Ex would depend on x, y, and z): 2
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Maxwell not only predicted the existence of electromagnetic waves
but also predicted the speed!



Harmonic solutions to the wave equation
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Plane-wave solutions to the wave equation in 3D
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For a plane wave (not in general):
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A typical value of E for a radio wave is 40 V/m  B = 0.1 μT (very weak).
Compare with the earth’s magnetic field of about 50 μT.
A small bar magnet has about  0.01 T.

The direction of the electric field is used to define the direction of light polarization.

Magnitudes of E a μT nd B



Maxwell’s equations in a transparent material
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Still valid but the electric permittivity and magnetic permeability are modified depending on the material.

0000 ,  rr 

Examples:
Air 1.00059

Water 80.1

Pyrex (glass) 4.7

Silicon 11.7

r

The speed of light in a material is given by 
rr

mat

c
c




1

Iron (Fe) 5000

Neodymium magnet 1.05

Aluminium 1.000 022

Nickel 100

r


