
Vectors

Review of vector analysis
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In Cartesian coordinate system
a vector can be decomposed into its
components along the x, y, and z axes.
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zyx eee ˆ,ˆ,ˆ are unit vectors along the x, y, and z axes.

They are perpendicular to each other.



Addition of two vectors
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Scalar product (Dot product) between two vectors
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Geometrical meaning:

In Cartesian coordinate:
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A dot product is a number (scalar)
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Cross product (Vector product) between two vectors
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Geometrical
meaning:
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volume of parallelepiped

Rule 1: )()( cbacba
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This rule is not difficult to remember.
The key point is to keep the cyclic order: abc, bca, cab,
whereas acb, bac, cba, will introduce a minus sign. 

The cross (x) and the dot (.) can be interchanged

Note that                    has no meaning or ambiguous.cba
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Rule 2: acbbcacba
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perpendicular
to plane ab

on plane ab

Geometric interpretation:
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0 on plane ab

must lie on plane ab.
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on plane ab on plane bc

The vector in the middle (b) has a positive coefficient



Scalar and vector fields

A scalar field is a function of position in space. It is a scalar or a number.

For example, a temperature field T(x,y,z) tells us the temperature at point (x,y,z) in space.

A vector field is also a function of position in space but it is a vector, i.e., it has a magnitude and direction.

For example, a wind velocity field on a weather chart: ),,( zyxv


Lund
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Umeå Note that both scalar and vector fields
may depend on additional variables such as time:
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Nabla operator (gradient operator)
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Gradient of a scalar field
is a vector.

It describes the rate of change of the scalar field along the x, y, and z directions.
It provides information about the rate of change of the scalar field in any direction.

The rate of change in an arbitrary direction       is given byn̂

)ˆ()ˆ()ˆ()(ˆ zyx en
z

en
y

en
x

rn





















)(r






Nabla on a vector field: Divergence

z

v

y

v

x

v
rv zyx














 )(

 Divergence is a scalar (number), not a vector.

The “dot” is very important.
has no meaning.v


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Physical meaning: the net flux (field lines) going out of a small volume dV.

dV

  fluxnet  )(  dVrv
)(rv
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Net flux is zero if there is no source inside the small volume
(incoming flux = outgoing flux)

Net flux is finite is there is a source inside the small volume.
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(For example: 
water flow in a river
through a volume 
of size dV = dx dy dz)
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Nabla cross a vector field: Curl or Rotation
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The “work” done by the field around a small loop is equal to
the rotation multiplied by the area of the loop.

dA
Work done by the field around a loop of area dA:
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Consider the work done by a vector field F around a small loop on the x-y plane:

A(x,y)

D(x,y+dy)
C(x+dx,y+dy)

B(x+dx,y)

work done along AB = dxyxFx ),(
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work done along DA = dyyxFdydyyxF yy ),(          ),( 

work done along the loop= dxdy
y

F

x

F
xy



















z-component of F




For an arbitrary loop of area dA, the work done along the loop by the field is given by AdF
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(only keep first-order terms in dx and dy)



Laplacian operator on a scalar field
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This is a scalar or a number

Nabla operating on several quantities 
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split the derivative into two parts: 
one acting on f only and another on g only
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)()()( vv v


  

)()( vv v


 

)()( vv v


 

)()( vv

 

Split the derivative (nabla)

Nabla on φ must be a vector and
nabla on v must be divergence

Drop the subscripts φ and v



Another example: )()()( baba ba
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Consider
each term:
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  )( Use rule 2: treat nabla as a vector.

Recall that a triple cross product produces a vector on
a plane formed by the vectors in the bracket
and the vector in the middle (a) has a positive sign.

The coefficients α and β must be scalars:
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Integrals
1) Line integral
2) Surface integral
3) Volume integral

Line integral




 

AB
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A

B

AB = a curve in space from
point A to point B

• The “dot” is very important. Without the dot, the expression makes no sense.

• A line integral must be defined with respect to a given curve and the direction is important:

• If F(r) is a force field, the line integral can be thought of as the work done by
the field from point A to point B.

ABBA II  

Integrals are scalars or numbers.



Meaning of line integral





N

i

ii rFrdrFrd

AB
1

)()(


A

B

Divide the curve into N small segments 
and sum the work done on each segment:
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As N is increased, the sum approaches the exact integral.

work done in segment i



Surface integral

(Pictures from Wikipedia)
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A small segment of the surface S and 
its contribution to the surface integral is given byDivide the surface into small segments dS.
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iSd
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is a vector at position       on the surface S
with magnitude dSi (area of the small segment)
and normal (perpendicular) to the surface.
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Volume integral over a scalar field





N

i

ii

SV

rdVrdV
1)(

)()(




A volume V enclosed by a surface S

S

dVi

A small volume segment of size dVi centred at ir
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Divide the volume into
N small segments



Stokes formula
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 When summing over the small segments,
contributions from the inner paths cancel out.

 divide into
small segments

Consider a closed loop

))(()( rFSdrFrd




Recall that the work done by the vector field F around a small loop is
equal to the rotation multiplied by the area of the loop:

Closed l

surface S

Closed loop C

The surface is
arbitrary, as long as
it encloses the loop C



Gauss formula
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V1 V2

flux going out of S1 = flux going into S2

Recall that divergence of a vector field multiplied by the volume is equal to the flux out of the volume: 
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When sum over the small volume segments, contribution from a surface of two neighbouring volumes cancels out.
 Only outer surface matters (in analogy to Stokes formula, in which only the outer loop matters)

S1 S2

Surface S enclosing volume V

V

S



Conservative field

A vector field is called conservative if
the work done by the field from point A to point B is independent of the path.
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If the field is conservative then the work done around a closed loop is zero
because the work done from A to B is the negative of the work done from B to A.
In other words, going from A to B and then back to A is the same as going from A to A,
i.e., not moving at all so that there is no work done.



A conservative field implies that it can be obtained as a gradient of a scalar field:
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Check that the work done is independent of the path:



A conservative field also implies that 0)(  rF
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This follows from the mathematical identity 0)(  

It can also be understood from Stokes theorem:
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for a conservative field.

True for any surface S(C) so that 0)(  rF
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Defining a line or curve in 3D

A line in three-dimensional space can be defined by a parameter λ, with value from 0 to 1.
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As λ is varied from 0 to 1, the vector position r(λ) traces a curve in space.

Examples: )0,,()( 2 r
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This defines a parabola y = x2 in x-y plane.

Alternatively, one can eliminate λ and uses one of the coordinates as a parameter.
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This defines a curve in 3D with y=2x and z=x2
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Example of conservative field: gravitational field
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gzz )( z is the height from earth’s surface
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Negative sign means the force is
directed downwards, towards
the earth’s surface
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Work done by the field

The work done by a person climbing up the hill from A to B
is then –W = g (the negative of the work done by the field).
Since the field is conservative, the work done is also given by 

gABW  )]()([ 

Gravitational potential:

Gravitational
force


